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Summary. The static structure factors of periodic systems have been deduced from 
ab initio Hartree-Fock calculations. Taking into account atomic thermal motions, 
dynamic structure factors at 298 K were then calculated by assuming that atomic 
displacements are independent and atomic orbitals follow nuclear movements. Three 
triperiodic systems have been studied: silicon, magnesium oxide and beryllium oxide. 
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1 Introduction 

The value of precisely determining the structure factors of a given compound is now 
an established fact. They are deduced from experimental observations and can be 
used for the construction of electron density maps, which furnish cSnsiderable 
information. Inversely theoretical structure factors can be obtained by Fourier 
transform of electron density. Agreement between experimentally and theoretically 
determined structure factors guarantees the quality of the wave function. Conse- 
quently, high quality wave functions can lead to the calculation of reliable values of 
other physical properties. The CRYSTAL program [-1] relies on Hartree-Fock 
theory to allow the study of periodic systems [21 at 0 K temperature. To compare 
theoretically determined structure factors to experimental values, theoretical results 
are corrected for thermal motion via the Debye-Waller model and experimental 
values are corrected for secondary effects (absorption, polarization, etc.). The theoret- 
ical-experimental difference at 0 K or at a given temperature T is minimized using 
a least squares method to furnish optimal thermal motion factors. The optimization 
process yields results whose quality improves as the number of parameters to be 
optimized is reduced, i.e. the compound is simple (mono-atomic) and the structure is 
symmetrical (isotropic). In this case, the thermal motion factor is a specific diagonal 
and isotropic tensor for each atom. In fully ionic compounds, e.g. MgO [3], 
contributions from each ion in the expression of overall structure factor can be 
separated. They can be corrected by respective thermal motion tensors, since the 
projection of electron density per energy band can be unambiguously attributed to 
a given ion. For non-ionic compounds, thermal motion corrections should be 
obtained by using the total molecular wave function or crystalline orbital. 
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The present work proposes a novel method for the calculation of dynamic 
structure factors at an arbitrary temperature T, which can be used with any kind of 
ab initio determined wave function. 

While in the usual technique, the electron density is first divided into atomic 
or ionic contributions and thermal motion is then applied independently to the 
individual species, our method does not require any a priori partition. 

The thermal correction is applied to couples of atomic orbitals (g, v) with which 
are associated the elements of the density matrix (P~), assuming that the latter 
remain unchanged at different temperatures. 

Our method has been applied to three types of crystals presenting a variety of 
structure and binding type, silicon, magnesium oxide and beryllium oxide. 

2 Method of calculating structure factors 

Static structure factor 

There exist different types of multi-photon processes when an electromagnetic 
wave interacts with an electron cloud. In two-photon, high-energy elastic inter- 
action processes (Thomson scattering) the ratio of scattered wave/incident wave 
amplitudes, called the scattering factor, is written as 

f(s) = f p(r)e-iS'rd3r, (1) 

where r is the electron position, p(r) is the electron density and s is the scattering 
vector. 

This corresponds to the mean value (first order perturbation) of the Hamil- 
tonian of two-photon interaction obtained in the Coulomb gauge [-4, 5]. f(s) is 
thus the Fourier transform of p(r). 

In the case of periodic systems, the scattering factor (1) is null, except for the 
scattering vectors s that satisfy Bragg's law. When expressed on the basis of 
a crystal cell, it is called the structure factor and is noted Fo (s). In this work, the 
wave function used results from a linear combination of atomic orbitals (LCAO) 
Hartree-Fock ab initio calculation [2] conducted with a program that takes the 
triperiodicity of the system into account (CRYSTAL [1]). 

In this case, the electron density is expressed as 

p(r) = ~ Pg, X°~ (A, r) xg*(B, r), (2) 
p,v,g 

where )~u ° (A, r) is the #th AO on atom A(rA) in the reference zero cell, z~(B, r) is the 
vth AO on atom B(rB) in the crystal cell associated with the translation vector g, 
and P ~  is the corresponding element of the density matrix. 

In general, each atomic orbital is developed as a linear combination of Gaus- 
sian type functions (GTFs). In the following, for simplicity and without loss of 
generality, we shall assume that there is only one GTF per AO. 

From expressions (1) and (2), the static structure factor Fo (s) can be written as 
follows: 

Fo(s) = ~ P g  lo,v(sx)I%(sr)I%(sz), (3) 
#, v,g 
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where 

Ig~,v(s~)--Ieo~.~(s~)= (X--XA)ne ~(x-~A)2(x--xB--g~)"e-~(~-~" aAZe-iS~Xdx, (4) 
oo 

c~ and fi are the exponents of the GTFs associated with AO/~(A) and v(B). 
Ig~(s~) will be referred to as the static scattering integral and is calculated 

analytically with the method proposed by Ferrero [6]. In this last expression, the 
reference system ~ - (0, x, y, z) is chosen for the quantum calculation of the wave 
function, and n, m are the degrees of the x polynomial that depend on the nature of 
the AOs encountered (s, p, d, etc.). 

Introduction of thermal motion 

In order to calculate the structure factors FT(S) at any temperature T, it is 
necessary to know the mean square displacements @2) of the atoms in the cell. 
The values of <u 2) are either experimental, in most cases determined from neutron 
scattering studies, or are obtained from an optimization between experimental and 
theoretical structure factors. 

In the context of the Debye hypothesis, the probability p(UA) of finding atom 
A with a displacement uA with respect to its equilibrium position rA follows the 
distribution law [7J: 

F det (BA 1)]1/2 
p(UA) = L ~ e--(1/z)"Ts;'"A' (5) 

where BA is the tensor of mean square displacements, of which each element is 
written as 

BA, ij=<UA,iUA, j> i , j = x , y , z .  (6) 

The values of BA are given in the crystallographic system (0, a l ,  a2, a3) and so 
they must be transformed to the working system N. 

Crystallographers usually take thermal motion into account by, first dividing 
the total electron density into atomic contributions PA (r) leading to atomic scatter- 
ing factorsfo,A, and then correcting them by the Debye-Waller exponential term. 
In this model of independent atoms, the structure factor is written as 

F Dw (s) = ~ f0,A (S) e - (1/2)*TBAs e - is.rA (7) 
A 

In the present work, we are proposing another way of calculating the structure 
factor at temperature TFT(S) that introduces in the mean value of the operator 
e- is . r  the atomic displacements u distributed with probability functions p(u). Our 
method is based on the assumption that the AOs follow the movements of the 
associated atoms, and that the corresponding elements of the density matrix Pg~ are, 
on a statistical average point of view, unchanged at the different temperatures. 

In the Debye hypothesis, where atoms are in mutually independent vibration, the 
variables UA and uB are separated. In addition, when the thermal agitation tensors 
BA and BB are simultaneously diagonal, which is very often the case, the expression 
FT(S) becomes easier to calculate because the coordinates UA,x, ..., UB,~, ... can also 
be separated. In this case, FT(S) becomes formally identical to (3): 

a, fi, g 
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where the integral of dynamic scattering I~;,~(sx) is the mean value of I~);.~(sx)(4) 
over the displacements UA,x and uB,~: 

1 } 
I~2,~(sx) = -+ + e - -  (1/2)(UZA'x/BA'~X) X/27tB~,~ e - (1/2)(u~,~/BB, x=) 

× ( X  - -  X A - -  U A , x ) n e  - c ~ < x - x A - u A ' x ) -  ( X  - -  X B - -  g x  - -  B , x )  

-oo 

x e ~(~-~,-o=- .... )2 e_iSxXdx t dUA,~duB, x. (9) 

The calculation of the integral (9) is shown in Appendix A. In the case of s or 
p orbitals (n = 0, 1; m = 0, 1), it leads to 

I~r:.e(sx) =_\ 2~ / ~ Io~;.~.(Sx), (10) 

where 
P 

c~ ' -  1 + 2c~BA,~ and f i~ -  1 + 2fiBB,~x (11) 

It should be also noted that the exponents c~" and fl" defined by (11) are always 
less than the corresponding exponents c~ and ft. This shows that the effect of thermal 
motion is to render GTFs more diffuse. When T + 0 K, B ~ 0, then ~x -~ ~, fi~ --+ fl 
and we have the expression of the static scattering integral Iog~,~(s~). 

When the two orbitals are centered on the same atom A, integration involves 
only the displacement UA of the atom, and in this case, regardless of the type of 
orbitals, we have an expression that includes the Debye-Waller term e -  (1/2)8 .... ~: 

I °  (sx) = I°o,e(s~) e -(1/2)B,.x~s~. (12) 

These integrals Igr,. ~(s) and I°o,~ (s) are the terms of a rectangular matrix Igr(S) 
shown below in the simple case of two orbitals per cell, each described by a single 
Gaussian and centered on different atoms, A and B. 

cell 0 

cell 0 

cell 1 

I~(~) = 

cell g 

IOT=,= 0 

0 i 0  I T=,#, 

1Tiv,~, 
1 l I 
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It is well-known that, for s = 0, the static structure factor must coincide with the 
total number of electrons enclosed in an elementary cell. At temperature T, this 
number is not exactly recovered with the present method. As we shall see in the 
following, this condition is nevertheless verified with a precision better than 0.1% 
which is still much smaller than the agreement factors between theoretical and 
experimental values. 

3 Applications and results 

Structure factors at 0 and 298 K were calculated with relationships (3) and (8), and 
compared to the most recent experimental values, reputed to be precise since they 
are corrected for systematic errors of absorption, dispersion and thermal diffuse 
scattering (TDS). The compounds chosen were silicon, magnesium oxide and 
beryllium oxide in order to present and discuss the results obtained with different 
crystal structures and different types of bonding. The calculated values Fo (s) and 
Fr(s) are listed in Tables 1 (Si), 2 (MgO) and 3 (BeO) of Appendix B and compared 
with experimental findings [Fr(ref.)] in Figs. 1 (Si), 2 (MgO) and 3 (BeO), where 
for each h k 1 reflection the relative difference [-F(T calc') ~7(ref')-I / IT(ref') ~° - - ' r  a / ~ r  ~represented 
(symbol O). 

As an indication, the importance of thermal correction for the structure factor 
was also evaluated using the relative difference If~ °al°) ~(calc')l/~7(calc') nA -- 10 1/10 a ,u  repre- 
sented on the same figures by the symbol 7:1. 

Finally, the agreement factor 

~= IF (talc) _ F~ef')[ 
R = h k l  

2 FU' 
h k l  

was calculated for each compound in order to analyze the overall quality of 
agreement with experimental findings. 

Silicon. Silicon has a face-centered cubic structure (diamond type). The only spots 
in a diffraction film are h k I of the same parity. The symmetry of the structure and 
the occupation of high symmetry sites by silicon atoms explain the isotropic 
character of atomic thermal motion. The value 8~z2Bs~ = 0.4632 ~2, obtained by 
Spackman [-8] from an optimization between calculated and experimental struc- 
ture factors, was used in the present work. 

The Fr(s) values obtained with our method and those calculated with the 
Debye-Waller relationship (7), which is written in the case of silicon: 

f DW (S) = Fo (s) e - 8~2Bs~ ((sin 0)/2) 2 (13) 

are listed in columns 4 and 5 of Table 1 for the 18 reflections explored by 
Spackman. 

Several theoretical values of Fo (s) were recently calculated by Pisani et al. [9] 
using different atomic orbital basis sets describing the Si atom. The Fo (s) values 
adopted in Table 1 (column 3) were calculated with Eq. (3) using the richest AO 
basis set, 8-411G**. 
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Fig. 1. Silicon: variations of the expressions 
[F(r c~c) - Fger')]/F(~°f')(I~) and [F~ale.) - Fo(¢"~¢')]/Fo(~"~¢') 
([  [] ]) versus sin 0/2 corresponding to the different 
reflections h kl (Table "" - ( ~ ° )  . -(oalo.) 1). t~T anu ro  are the dynamic 
and stgtic structure factors calculated with Eqs (8) and (3). 
F~ a') hre the experimental values given by Spackman [8] 

Furthermore, the reference values used in Fig. 1 and for the calculation of R 
are those obtained with relationship (13), where the static structure factors Fo(s) 
correspond to the experimental values of Spackman [8]. 

Examination of Fig. 1 (symbol O) and the value R = 0.2% show that the agree- 
ment with experimental data is excellent. 

Magnesium oxide. Magnesium oxide has a face-centered cubic structure (NaC1 
type). For  the same reasons as in the case of silicon, the thermal motion of the 
Mg 2+ and O 2 ions is isotropic and results in a diagonal tensor B with three 
identical components. The values adopted in the present work are 

8712BMg2+ = 8TC2Bo 2- = 8 ~ 2 B  = 0.336 ~2. 

They were obtained from the optimization between theoretical structure factors 
calculated by Caus/t et al. [3] and experimental structure factors determined by 
Lawrence [10]. These data were preferred to those of Sanger [11] for the reasons 
discussed in [3]. 

Magnesium oxide is a fully ionic compound and so is treated with the model of 
independent atoms: the static structure factor of each species FO,Mg~+ and Fo,o~- is 
obtained by adding the electron density contributions in each energy band that are 
unambiguously attributable to either magnesium or to oxygen. In these conditions, 
the structure factor at T calculated with the Debye-Waller relationship (7) is 

FrDW(s) = [F0,Mg~ + ($) + Fo,o 2- (s)] e - 8~2B((sin°)'~)2, (14) 

where the + and - signs are used each time reflection in direction s corresponds 
to all odd h k I and all even h k l, respectively. 

The terms FO,Mg2+ (s) and Fo,o~- (s) in Eq. (14) were calculated in this work using 
the methodology of Causfi et al. [3], but with the use of stricter calculation 
conditions, identical to those used for silicon [9], and an enriched AO basis set for 
Mg and O with d polarization functions on each atom [12]. The values thus 
obtained are listed in columns 3 and 4 of Table 2. In spite of these new conditions, 
a very slight variation of structure factors in small angle zones ((sin 0)/2 ~< 0.5 A-  1) 
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Fig. 2. Magnesium oxide: same legend as for Si in Fig. 1. 
F~ ec) are the experimental values given by Sanger [11]. 
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Fig. 3. Beryllium oxide: same legend as for Si in Fig. 1. 
F i  ef.) are the experimental values given by Vidal-Valat 
et al. [14]. 

is observed. The FrDW(s) values (14) are listed in column 6 of Table 2 in order  to 
compare  them with the F r  (s) values derived with Eq. (8). 

In order  to compare  our  theoretical results to the experimental data  of Sanger 
[11], most  numerous  in small angle zones, the values in column 6 were corrected by 
taking into account  the phenomenon  of anomalous  dispersion [11]. Figure 2 and 
the value of factor of agreement  R = 1.74%, show that  agreement  is satisfactory 
between our  results and those of Sanger. It should be noted that  five low intensity 
reflections, 751,931,933,  771 and 755 are responsible for a considerable difference 
that can reach 29%. When  they are not  included, the value of R becomes 1.52%. 
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Beryllium oxide. The choice of this compound is justified because it enables our 
calculations to be extended to a hexagonal compact, anisotropic crystal structure 
(wurtzite type) and to a partially covalent bond. 

In a prior study [-13] the structure factors F~W(s) were calculated with Eq. (7): 

F r  Dw (s) = Fo (s) = e - 8~2B((sin 0)/2')2 (15) 

adopting a mean square deviation 8rc2/~ = 0.3063 ~2 defined by 

/~ : mBeBBe -I- moBo 
roBe -4- mo 

and resulting from optimization between our values calculated with expression (15) 
and the experimental values of Vidal-Valat et al. [14]. The agreement factor 
R = 3.7% shows that the quality of agreement is moderate, partially explained by 
the large relative difference characterizing all reflections corresponding to 1 = 4. 

Stricter calculation conditions defined in the study of silicon and the use of 
a richer atomic orbital basis set developed for the study of the elastic constants of 
BeO [15] were adopted in the present work. They furnish the values of Fo (s) listed 
in columns 3 and 4 of Table 3 and calculated from the methodology adopted 
previously in the case of MgO. 

The introduction of thermal motion requires the use of anisotropic B tensors, 
involving four parameters that must be separately optimized in order to obtain the 
best possible agreement with experimental findings. To avoid these numerous 
calculations, the values proposed by Vidal Valat et al. [14] were used: 

87"C2BB . . . .  : 8g2BBe,yy : 0.3237 ~z, 87t2BB .... = 0.4185 fik 2, 

87z2Bo,xx = 87z2Bo,yy = 0.2763 ~2, 87t2Bo,zz = 0.2842 fik 2 

and the F~W(s) values thus deduced from Eq. (7) are listed in column 6 of Table 3. 
Figure 3 and the new value of the overall factor of agreement R = 2.3% are 

a substantial improvement over prior results [13], also confirmed by the satisfying 
agreement of practically all I = 4 reflections. This improvement was brought about 
by including the anisotropic thermal motion tensors. These observations are 
confirmed by examining the curves showing the effect of thermal agitation (symbol 
V1), which clearly show the existence of two branches: the lower branch corres- 
ponds to the nine l = 4 reflections. This result confirms the necessity of treating 
thermal motion in BeO anisotropically. 

4 Discussion and conclusion 

In this work, we have calculated dynamic structure factors Fr(s) including atomic 
vibrations resulting from thermal motion. We assume that the atomic orbitals 
follow the motion of the corresponding nuclei while the matrix density remains 
invariant. The normalization of FT(S = 0) is an essential point to our method. In 
the case of silicon (the most unfavourable case) Fr(s = 0) = 13.981 which is within 
0.1% of the exact value of 14. 

Our method (expression (8) of FT(S)) was compared with the classical 
Debye Waller model (expression (7) of FrDW(s)) which is customally used by 
crystallographers to correct atomic scattering factors. The results obtained with 
either of these methods are very similar, practically at the limit of the calculation 
precision at large values of sin 0/2. 
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This result is entirely consistent in the case of ionic compounds (MgO) since 
there is practically no orbital overlap and since the terms I°o.~ (s) of relationship (12) 
correspond to the Debye-Waller correction. 

In the case of the covalent crystal, silicon, with considerable orbital overlap, 
the general situation is as if all the matrix elements Igr(s) were corrected in 
the same way by the Debye-Waller factor, but in the region of small values of 
sin0/2, which is the most affected by the valence electrons, the difference 
between Fr(s)  and F~W(s) is more clearly pronounced. In particular, the 
difference between these two structure factors for the reflection (2 2 2), representing 
the asphericity of the electron distribution around the silicon atom, is much 
larger (1%). In addition, these calculations pertain to room temperature, i.e. 
to low values of mean square difference @2). The differences between Fr(s) 
and FrOW(s) increase for B values one order of magnitude larger (amplitudes 
of atomic vibrations about three times higher). They lead to a deviation of 
0.30% for the first three reflections and 10% for the reflection (222). This result 
shows clearly the influence of the orbital overlap on the calculated structure 
factors. 

Finally, it is important to stress that our method Fr(s) is easily implemented, 
and that the computation costs of the calculations is comparable to that of 
the static case. In our opinion, the main advantage is that this method does 
not require any prescription for subdividing the total density into atomic 
contributions, which may be rather artificial in some cases. Our calculation 
program relies on the matrix density P g  reproduced by the CRYSTAL program, 
since vibronic correction directly affects each atomic orbital in each cell 9 of 
the crystal. Thus this method requires no intermediate step, such as the projection 
of Pg on energy bands E,(k) that we have also carried out in the case of MgO 
and BeO for the calculations of dynamic structure factors in the Debye-Waller 
model. 

Appendix A 

Given to calculate Eq. (9) which can be also written as 

S ~ - L , ( s x )  = ( x  - x A  - ~,.) e 
- c o  - o o  - o o  

x ( x _ x ~ _ g  _u i~ .~ ) . , e -a (x -~ ,  s~)~e is.~ 

, { (   xx l]2 t x ~ e x p  - e +  UA,x 
x/27~B A . . . .  ~ + 1/2BA,x~ 

x exp c~ + 
+ 1/2BA,~x 

1 f i ( x  - x o  - 9 ~ ) ~ 2  

x/2~B~,  xx , , 

. . . . . . .  U b l 4  x x exp fi +2B-~B,~ L fl + ll2BB, x~ J ; "' dUB x d X .  
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The principal integral on x is not limited, but given the mathematical shape 
of the electron functions (Gaussian), x varies within a limited domain around the 
atom. As a result of this, the following variable changes can be carried out: 

- x A )  f i ( x  - x B  - g x )  t t 
U A ,  x = UA,  x - -  , 

c~ + 1 /2BA,x~  and u . , ~  = u . , ~  fl + 1 / 2 B . , ~ x  

where x is considered to be a constant. 
Using the new exponents 

- 2BA,  x~ c(x and - 2BB,  ~ f ix ,  
c~ + 1 / 2 B A , ~  fl + 1/2BR,: ,~ 

we obtain 

f 
+co 1 

I~,~(s~)= e ~'(x-xA)2e -~'A~ x.-g~)2e i s ~  

! t 
x [ x  - -  xA  - u'A,x - -  2 B A , ~ x ~ ( X  - -  Xa)]" e - ~.'~,~/2~.xx~'~ dUA,~ 

09 

1 [+co 
x _ ~ _  I x  - -  XB - -  9:, - -  U~,~ - -  2BB , : , x f l ' (X  - -  XB - -  9~)]m 

, ~ o v  

x e -flu'd/2B~,~xfi; du'B,~ d x .  (A1) 

Now that the two displacement variables u)~ and u~ are separated, we have to 
calculate the following integrals: 

( x  - xA)  - uA, ~ e - c%.~/2~A,=~'~ du'a, ~. 
- - C O  

There are three cases, depending on the type of orbitals involved, the most 
complicated being that of d~2 for which n = 2. 

! f +co 
- 2 7x (x - xA) u~4, ~ e - ~<,,~/2B.~; d u ' . x  

co 

+ UA,x e - e u * ~ 2 / 2 B ' * , * ~ % d u ' A . , x .  (A2) 
- - c O  

The second integral is null since the function is odd in u~,~. Concerning 
the other two, a mathematical formula is used that involves hermitian 
functions: 

f+cO ( 2 1 - 1 ) "  / rc 
- c O  w Z l e - ~ ' W ~ d w  ~ " y21+l" 

We thus have for (A2): 

( x  XA) 2 + I L =  ~ 1 
' O~ 2Ba,~x~ 
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It is possible to include the three cases n -- 0, 1, 2 in a single expression: 

The  first  t e r m  in b r a c k e t s  is in fact  a lways  p resen t ,  for  n = 0 (in wh ich  
case  it is e q u a l  to  1) as well  as for  n = l  o r  n = 2 .  C o n c e r n i n g  the  s e c o n d  
te rm,  it a p p e a r s  on ly  for  dx2 o r b i t a l s  when  n is e q u a l  to  2, wh ich  is w h y  we have  
a d d e d  the  K r o n e c k e r  s y m b o l  6(n - 2). A d d i n g  these  va lues  to  e x p r e s s i o n  (A1), we 
o b t a i n  

I~o,~(Sx) = e - ~;(x - xA)2 e -/~;(x - x~ - gx)2 e-SxX 
- - o O  

x ( x  - x~  - gx )  m + BB,  xx 

x c~(m -- 2) d x  (A3) 

We have  s ta t ic  i n t eg ra l s  wi th  new e x p o n e n t s  ex a n d  , .  gx ' fix. I0~:,B ~ (s~). 

Appendix B 

Table 1. Static Fo(s) and dynamic FT(S), FDW(s) structure factors of silicon 
calculated with Eqs. (3), (8) and (7), respectively. 

h k I (sin 0)/2 Fo (s) FT (s) F ow (s) 

1 1 1 0.160 10.755 10.624 10.628 
2 2 0 0.260 8.640 8.371 8.374 
3 1 1 0.305 8.004 7.661 7.666 
2 2 2 0.319 0.217 0.20902 0.20701 
4 0 0 0.368 7.465 7.009 7.011 
3 3 1 0.401 7.269 6.746 6.747 
4 2 2 0.451 6.730 6.123 6.125 
3 3 3 0.478 6.426 5.781 5.781 
5 1 1 0.478 6.459 5.810 5.810 
4 4 0 0.521 6.060 5.345 5.344 
4 4 4  0.638 4.983 4.127 4.127 
5 5 1 0.658 4.815 3.942 3.940 
6 4 2  0.689 4.556 3.657 3.657 
8 0 0  0.737 4.187 3.258 3.256 
6 6 0  0.781 3.871 2.918 2.918 
5 5 5 0.797 3.758 2.800 2.800 
844  0.902 3.147 2.159 2.159 
8 8 0 1.042 2.536 1.535 1.534 

The computat ional  procedure, the truncation conditions adopted for the 
calculated wavefunction, the atomic orbital basis set 8-41 lG** and the lattice 
parameter  ao - 5.431 A used in this study were already described by Pisani 
et ai. [9]. 
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Table 2. Magnesium oxide: same comment  as for Si. 

P. Azavant et al. 

hkl  (sin 0)/)~ Fo,Mg(s ) Fo,o(S ) Fr(s) FDW(s) 

1 1 1 0.205 8.669 5.935 10.779 10.779 
2 0 0 0.237 8.292 5.246 53.141 53.140 
2 2 0 0.336 7.018 3.632 41.018 41.015 
3 1 1 0.393 6.263 2.967 12.521 12.518 
2 2 2 0.411 6.042 2.881 33.727 33.724 
4 0 0 0.475 5.281 2.466 28.734 28.731 
3 3 1 0.517 4.814 2.176 9.649 9.646 
4 2 0  0.531 4.675 2.191 24.990 24.987 
2 2 4  0.581 4.187 2.006 22.116 22.114 
1 1 5 0.6t6 3.882 1.848 7.160 7.159 
3 3 3 0.616 3.882 1.846 7.170 7.t66 
4 4 0  0.671 3.462 1.777 18.015 18.013 
5 3 1 0.702 3.253 1.677 5.343 5.341 
6 0 0 0.712 3.189 1.701 16.503 16.501 
4 4 2  0.712 3.189 1.702 16.505 16.503 
6 2 0 0.750 2.961 1.642 15.239 15.238 
5 3 3 0.778 2.813 1.573 4.049 4.048 
22 6 0.787 2.768 1.592 14.166 14.165 
4 4 4 0.822 2.604 1.551 13.244 13.243 
7 1 1 0.847 2.496 1.501 3.130 3.129 
5 5 1 0.847 2.496 1.500 3.132 3.131 
6 4 0 0.855 2.463 1.514 12.441 12.440 
6 4 2 0.888 2.342 1..481 11.736 11.735 
7 3 1 0.911 2.262 1.442 2.481 2.480 
5 5 3 0.911 2.262 1.442 2.482 2.481 
8 0 0 0.949 2.146 1.424 10.550 10.549 
7 3 3 0.971 2.084 1.393 2.017 2.016 
8 2 0 0.978 2.065 1.398 10.045 10.045 
6 4 4 0.978 2.065 1.,398 10.046 10.045 
2 2 8 1.007 1.995 1.374 9.588 9.587 
6 6 0 1.007 1.995 1.374 9.588 9.587 
7 5 1 1.027 1.947 1.348 1.682 1.681 
5 5 5 1.027 1.947 1.348 1.683 L682 
6 6 2 1.034 1.932 1.351 9.170 9.169 
8 4 0 1.061 1.877 1.329 8.785 8.784 
9 1 1 1.081 1.839 1.307 1.438 1.438 
7 5 3 1.081 1.839 1.307 1.439 1.438 
8 4 2 1.087 1.827 1.308 8.430 8.429 
6 6 4 1.113 1.783 1.287 8.101 8.100 
9 3 1 1.132 1.752 1.268 1.260 1.260 
8 4 4 1.162 1.706 1.248 7.506 7.505 
9 3 3 1.180 1.681 1.231 1.129 ,1.128 
7 7 1 1.180 1.681 1.231 1.129 1.128 
7 5 5 1.180 1.681 1.231 1.129 1.128 

1000 1.186 1.673 1.229 7.236 7.235 
8 6 0 1.186 1.673 1.229 7.236 7.235 

10 2 0 1.210 1.643 1.211 6.981 6.981 
8 6 2 1.210 1.643 1.211 6.981 6.981 
9 5 1 1.227 1.622 1.195 1.030 1.029 
7 7 3 1.227 11622 1.195 1.030 L030 

102 2 1.233 1.615 1.193 6.741 6.740 
6 6 6 1.233 1.615 1.193 6.741 6.741 

The computat ional  procedure and truncation conditions are the same as those described 
for Si. The AO basis set is given in [12] and the lattice parameter is ao = 4.215 A. 
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Table 3. Beryllium oxide: same comment  as for Si. 

hkl (sin 0)/2 Fo,Bo(s ) Fo,o(S) Fr(s) vrDW(s) 

100 0.216 0.924 2.973 7.689 7.691 
0 0 2 0.230 1.829 5.509 11.598 11.599 
10 1 0.244 1.566 4.453 6.933 6.930 
10 2 0.315 0.848 1.979 4.237 4.237 
1 1 0 0.374 1.595 3.216 9.235 9.237 
10 3 0.407 1.328 2.506 6.714 6.716 
2 0 0 0.431 0.744 1.325 3.915 3.917 
1 12 0.439 1.474 2.646 5.777 5.778 
2 0 1 0.446 1.264 2.264 3.075 3.074 
0 0 4 0.460 1.435 2.526 2.148 2.147 
2 0 2 0.489 0.690 1.159 2.527 2.529 
104 0.508 0.672 1.130 0.896 0.896 
20 3 0.552 1.092 1.796 4.839 4.841 
2 10 0.571 0.614 1.012 2.955 2.955 
21 1 0.582 1.045 1.703 2.197 2.196 
1 1 4 0.592 1.188 1.933 1.434 1.433 
10 5 0.614 0.995 1.636 4.382 4.383 
21 2 0.615 0.573 0.940 2.000 2.000 
2 0 4 0.630 0.560 0.914 0.673 0.673 
3 0 0  0.647 1.091 1.810 5.130 5.131 
2 1 3 0.667 0.916 1.529 3.937 3.938 
3 0 2 0.687 1.024 1.721 3.542 3.543 
0 0 6 0.690 1.019 1.716 3.302 3.303 
2 0 5 0.719 0.842 1.454 3.675 3.676 
10 6 0.723 0.483 0.831 1.572 1.572 
2 14 0.733 0.475 0.818 0.630 0.629 
2 2 0 0.747 0.927 1.641 4.359 4.359 
3 1 0 0.778 0.440 0.799 2.076 2.076 
2 2 2 0.782 0.874 1.583 3.077 3.077 
1 1 6 0.784 0.870 1.579 2.88l 2.881 
3 1 1 0.786 0.752 1.358 1.655 1.655 
3 0 4 0.794 0.857 1.555 1.245 1.244 
2 1 5 0.810 0.722 1.350 3.192 3.194 
3 12 0.811 0.416 0.774 1.475 1.475 
2 0 6  0.813 0.414 0.772 1.385 1.385 
l 0 7 0.833 0.694 1.314 1.715 1.715 
3 1 3 0.851 0.673 1.312 2.963 2.964 
4 0 0 0.863 0.381 0.754 1.825 1.826 
40 1 0.870 0.650 1.280 1.527 1.527 
2 2 4 0.877 0.742 1.468 1.241 1.240 
4 0 2 0.893 0.361 0.734 1.320 1.320 
2 1 6 0.895 0.360 0.732 1.242 1.243 
3 1 4 0.903 0.355 0.722 0.619 0.618 
2 0 7 0.913 0.604 1.248 1.584 1.584 
0 0 8 0.920 0.689 1.454 3.248 3.250 
40 3 0.929 0.587 1.248 2.640 2,641 
3 2 0 0.940 0.333 0.718 1.624 1,625 
10 8 0.944 0.330 0.716 1.565 1,566 
3 0 6 0.946 0,659 1.418 2.327 2,328 
3 2 1 0.947 0,569 1.221 1.429 1.429 
3 1 5 0.967 0,550 1.221 2.531 2.532 
222  0.968 0,317 0.701 1.193 1.I93 
4 0 4 0.978 0.311 0.691 0.613 0.612 
2 1 7 0.986 0.531 1.194 1.475 1.475 
4 1 0 0.988 0.611 1.395 3.020 3.020 
1 18 0.993 0.607 1.391 2.913 2.915 
3 2 3 1.001 0.517 1.195 2.375 2.375 

The computational  procedure and truncation conditions are the same as those describeod 
for Si. The AO basis set is given in [I3, 15] and the lattice parameters are: ao = 2.677 A; 
co = 4.350 A; uo = 0.3774. 



226 P. Azavant et al. 

Acknowledgement. The authors wish to express their gratitude to Prof. Pisani for his helpful suggestions 
and discussions. 

References 

1. Dovesi R, Pisani C, Roetti C, Causfi M, Saunders VR (1988) Crystal 88 QCPE, Program n°577, 
Indiana University Bloomington Indiana 

2. Pisani C, Dovesi R, Roetti C (1988) Hartree Fock ab initio treatment of crystalline systems, 
Springer, Berlin, Heidelberg, New York 

3. Causfi M, Dovesi R, Pisani C, Roetti C (1986) Acta Cryst B42:247 
4. Cohen-Tannoudji C, Dupont-Roc J, Grynberg G (1988) In: Processus d'Interaction entre Photons 

et Atomes, CNRS 
5. Azavant P (1994) Approche th6orique de la diffusion 6tastique et in+lastique dans les solids par la 

mSthode ab initio Hartree-Fock: Application aux sulfines de lithium et de sodium, Thesis, 
University of Pau 

6. Ferrero E (1981) Studio Hartree-Fock della struttura elettronica di sistemi metallici: applicazione al 
litio, Thesis, University of Torino 

7. Willis BTM, Pryor AW (1975) In: Thermal vibrations in crystallography, ch 4, p 96, Cambridge 
8. Spackman MA (1986) Acta Cryst A42:271 
9. Pisani C, Dovesi R, Orlando R (1992) Int J Quantum Chem 42:5 

10. Lawrence JL (1973) Acta Cryst A29:94 
11. Sanger PL (1969) Acta Cryst A25:694 
12. Dovesi R, Roetti C, Freyria-Fava C, Apr/~ E, Saunders ¥R, Harrison VR (1992) Phil Trans R Soc 

London A341:203 
13. Lichanot A, Chaillet M, Larrieu C, Dovesi R, Pisani C (1992) Chem Phys 164:383 
14. Vidal-Valat G, Vidal JP, Kurki-Suonio K, Kurki-Suonio R (1987) Acta Cryst A43:540 
15. Lichanot A, Rerat M (1993) Chem Phys Lett 211:249 


